MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/22 Paper 22 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Pa	Page 2		Mark Scheme: Teachers' version	Syllabus	Pap	per	
	J		GCE A/AS LEVEL – October/November 2009	9701	22		
1 (a)	CO van SiC	₂ has in i der Wa)₂ is giar	ple molecular/simple covalent/has discrete molecules duced dipole – induced dipole interactions/ aals' forces/weak intermolecular forces nt molecular/giant covalent/macromolecular trong covalent bonds		(1) (1) (1) (1) [any 3]	
(b)	min i.e.	imum is	s 4-valent Si-O and at least one Si-O-Si		(1) (1)		
						[2]	
(c)	(i)	the mo there a betwee collisio the mo the mo the mo the kin directly the pre betwee	ideal gas, any four from the following plecules behave as rigid spheres are no/negligible intermolecular forces on the molecules ons between the molecules are perfectly elastic plecules have no/negligible volume plecules move in random motion plecules move in straight lines retic energy of the molecules is y proportional to the temperature essure exerted by the gas is due to the collisions on the gas molecules and the walls of the container ideal gas obeys $pV = nRT$	(r	(1) (1) (1) (1) (1) (1) (1) (1) max 4)		
	(ii)		are intermolecular forces between CO ₂ molecules/ olecules have volume		(1)	[5]	
(d)	gra	phite ha	as delocalised electrons		(1)	[1]	
(e)	(i)		$\begin{array}{l} 2C \ \rightarrow \ SiC + CO_2 \ \mathbf{or} \\ 3C \ \rightarrow \ SiC + 2CO \end{array}$		(1)		
	(ii)	diamor	nd because SiC is hard		(1)	[2]	
					[Tota	al: 13]	

Page 3 Mark Scheme: Teachers' version		Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9701	22

2 (a) (i)

formula o	of chloride	NaC1	MgCl ₂	AlCl ₃	SiC14	PCl ₃	SCl ₂		
oxidation	number of element in the chloride	+1	+2	+3	+4	+3	+2		
(ii)	correct oxidation nos. for NaCl to SC l_2 Na to A1 loss of outer/valence electrons to give configuration of Ne/to complete octet Si to S gain or sharing of outer electrons to give configuration of Ar/to complete octet				(1) 1) 1) 1) 1)	[5]		
(b) (i)	giant lattice (may be in diagram) with strong ionic bonding					(1) (1)			
(ii)	onic						(1)		
(iii)	-1					(1)			
(iv)	+ _ : Na : [×] . H								
	correct numbers of electrons correct charges						1) 1)		

(v)

compound	MgH_2	A <i>l</i> H ₃	PH_3	H_2S
oxidation number of element in the hydride	+2	+3	-3	-2

correct oxidation nos. for MgH_2 and AlH_3 correct oxidation nos. for PH_3 and H_2S

(c) (i)

chloride	sodium	magnesium	aluminium
pН	7	6.5–6.9	1–4
	(no mark)	(1)	(1)

(ii) NaH + H₂O \rightarrow NaOH + H₂

(1)

(1)

(1) (1)

[8]

[4]

(iii) 10–14

Page 4	Mark Scheme: Teachers' version GCE A/AS LEVEL – October/November 2009	Syllabus 9701	Pape 22	er
(d) (i) cova		0101	(1)	
SiC 4	+ $4H_2O \rightarrow Si(OH)_4$ + $4HCl$ or + $4H_2O \rightarrow SiO_2.2H_2O$ + $4HCl$ or + $2H_2O \rightarrow SiO_2$ + $4HCl$		(1) [Tota	[2] Il: 19]
allow	$\begin{array}{ll} NaBr+H_2SO_4 & \to & NaHSO_4+HBr\\ 2NaBr+H_2SO_4 & \to & Na_2SO_4+2HBr\\ C_4H_9OH+HBr & \to & C_4H_9Br+H_2O \end{array}$		(1) (1)	[2]
(b) <i>n</i> (NaBr)	= $n(\text{HBr}) = \frac{35}{103} = 0.34$		(1)	
n(C₄H₀Oŀ	H) = $\frac{20}{74}$ = 0.27		(1)	
	is in an excess – no mark just for this answer			[2]
C₄H ₉ OH if yield is	I, using mass ≡ C_4H_9Br 100%, $_9OH \rightarrow 137 \text{ g } C_4H_9Br$			
15.4 g C ₄	H ₉ OH would produce $\frac{137 \times 15.4}{74}$ = 28.5 g C ₄ H ₉ Br		(1)	
% yield =	$\frac{22.5 \times 100}{28.5} = 78.9$		(1)	

or methods using moles

method 2

$$n(C_{4}H_{9}OH) = \frac{15.4}{74} = 0.208$$

for 100% yield n(C_{4}H_{9}Br) would be 0.208 × 137 = 28.5g (1)
% yield = $\frac{22.5 \times 100}{28.5} = 78.9$ (1)

method 3

$$n(C_{4}H_{9}OH) = \frac{15.4}{74} = 0.208 \text{ mol}$$

for 100% yield n(C₄H₉Br) would be 0.208 mol
actual n(C₄H₉Br) = $\frac{22.5}{137} = 0.164 \text{ mol}$ (1)
% yield = $\frac{0.164 \times 100}{0.208} = 78.8$ (1) [2]

(4 × 1) [4]

Page 6		Mark Scheme: Teachers' version Syllabus	Pape	ər
		GCE A/AS LEVEL – October/November 2009 9701	22	
(b) (i)		w ecf on any alkene above	(1)	
(ii))	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	allov	w ecf on any alkene above	(1)	[2]
			[Tot	tal: 6]
5 (a) 2,4	4-dinitr	rophenylhydrazine or aqueous alkaline iodine ↓	(1)	
ye	ellow-oi	prange-red ppt. yellow ppt.	(1)	[2]
• •		ss gas evolved or Na dissolves I + Na $\rightarrow C_4H_9ONa + \frac{1}{2}H_2$	(1) (1)	[2]
(c) (i)) CH ₃	₃ CH ₂ CH ₂ CH ₂ CH ₂ OH	(1)	
(ii))	H H H OH H H-C-C-C-C-H H H H H H		
(iii))			
		OH	(1)	[3]
(d) (i)) pent	tan-2-ol	(1)	
(ii))			
		CH ₃ CH ₂ CH=CHCH ₃ CH ₃ CH ₂ CH ₂ CH=CH ₂		
		product 1 product 2		

(1 + 1) [3]

Page 7	Mark Scheme: Teachers' version			Syllabus	Paper	
	GCE A/AS LEV	EL – Octo	ber/November 2009	9701	22	
(e) (i)						
	CH_3					
H₃C	CH₃ │ C—CH₂OH │					
	 CH₃	or	CH ₃ C(CH ₃) ₂ CH ₂ OH		(1)	
(ii)						
()	CH₃					
ЦС	CH₃ │ C—C—CO₂H │					
	,—C—CO₂⊓ │					
	${C}H_{3}$	or	CH ₃ C(CH ₃) ₂ CO ₂ H			
allo	w ecf on (e)(i)				(1)	
					()	

[Total: 12]