MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

9701 CHEMISTRY
 9701/22 Paper 22 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9701	22

1 (a) CO_{2} is simple molecular/simple covalent/has discrete molecules
CO_{2} has induced dipole - induced dipole interactions/ van der Waals' forces/weak intermolecular forces
SiO_{2} is giant molecular/giant covalent/macromolecular
(b) minimum is

4-valent Si-O and at least one $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$
i.e.

(c) (i) for an ideal gas, any four from the following the molecules behave as rigid spheres
there are no/negligible intermolecular forces between the molecules
collisions between the molecules are perfectly elastic
the molecules have no/negligible volume
the molecules move in random motion
the molecules move in straight lines
the kinetic energy of the molecules is directly proportional to the temperature
the pressure exerted by the gas is due to the collisions between the gas molecules and the walls of the container
not an ideal gas obeys $p V=n R T$
(ii) there are intermolecular forces between CO_{2} molecules/ CO_{2} molecules have volume
(d) graphite has delocalised electrons
(e) (i) $\mathrm{SiO}_{2}+2 \mathrm{C} \rightarrow \mathrm{SiC}+\mathrm{CO}_{2}$ or
$\mathrm{SiO}_{2}+3 \mathrm{C} \rightarrow \mathrm{SiC}+2 \mathrm{CO}$
(ii) diamond because SiC is hard
[Total: 13]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9701	22

2 (a) (i)

formula of chloride	NaCl	MgCl_{2}	AlCl_{3}	SiCl_{4}	PCl_{3}	SCl_{2}
oxidation number of element in the chloride	+1	+2	+3	+4	+3	+2

correct oxidation nos. for NaCl to SCl_{2}
(ii) Na to Al
loss of outer/valence electrons
to give configuration of $\mathrm{Ne} /$ to complete octet
Si to \mathbf{S}
gain or sharing of outer electrons
to give configuration of Ar/to complete octet
(1)
(b) (i) giant lattice (may be in diagram)
with strong ionic bonding
(ii) ionic
(iii) -1
(iv) $\begin{array}{ll}\underset{\mathrm{Na}}{ }{ }^{+} \quad{ }^{-} \mathrm{H}^{-}\end{array}$
: Na :
correct numbers of electrons
correct charges
(v)

compound	MgH_{2}	AlH_{3}	PH_{3}	$\mathrm{H}_{2} \mathrm{~S}$
oxidation number of element in the hydride	+2	+3	-3	-2

correct oxidation nos. for MgH_{2} and AlH_{3}
correct oxidation nos. for PH_{3} and $\mathrm{H}_{2} \mathrm{~S}$
(c) (i)

chloride	sodium	magnesium	aluminium
pH	7	$6.5-6.9$	$1-4$
(no mark)			

(ii) $\mathrm{NaH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{2}$
(iii) 10-14
(1)

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9701	22

(d) (i) covalent
(ii) $\mathrm{SiCl}_{4}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Si}(\mathrm{OH})_{4}+4 \mathrm{HCl}$ or
$\mathrm{SiCl}_{4}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{HCl}$ or $\mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+4 \mathrm{HCl}$
[Total: 19]

3 (a) stage I $\mathrm{NaBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO}_{4}+\mathrm{HBr}$
allow $\quad 2 \mathrm{NaBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HBr}$
stage II $\quad \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{HBr} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}+\mathrm{H}_{2} \mathrm{O}$
(b) $n(\mathrm{NaBr})=n(\mathrm{HBr})=\frac{35}{103}=0.34$
$n\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}\right)=\frac{20}{74}=0.27$
$\mathrm{NaBr} / \mathrm{HBr}$ is in an excess - no mark just for this answer
(c) method 1 , using mass
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH} \equiv \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$
if yield is 100%,
$74 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH} \rightarrow 137 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$
$15.4 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ would produce $\frac{137 \times 15.4}{74}=28.5 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$
$\%$ yield $=\frac{22.5 \times 100}{28.5}=78.9$
or methods using moles
method 2
$n\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}\right)=\frac{15.4}{74}=0.208$
for 100% yield $n\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right)$ would be $0.208 \times 137=28.5 \mathrm{~g}$
$\%$ yield $=\frac{22.5 \times 100}{28.5}=78.9$
method 3
$n\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}\right)=\frac{15.4}{74}=0.208 \mathrm{~mol}$
for 100% yield $n\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right)$ would be 0.208 mol
actual $n\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right)=\frac{22.5}{137}=0.164 \mathrm{~mol}$
$\%$ yield $=\frac{0.164 \times 100}{0.208}=78.8$

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9701	22

(d) inorganic by-product
$\mathrm{Br}_{2} /$ bromine or sulfur dioxide/ $/ \mathrm{SO}_{2}$
conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ behaves as an oxidising agent

organic by-product

but-1-ene $/ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
allow butane and $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OC}_{4} \mathrm{H}_{9}$
conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ behaves as a dehydrating agent
[Total: 10]

4 (a)

(4×1)

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9701	22

(b) (i) X
allow ecf on any alkene above
(ii)

allow ecf on any alkene above

5 (a) 2,4-dinitrophenylhydrazine

or aqueous alkaline iodine
(b) colourless gas evolved or Na dissolves
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{Na} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{ONa}+1 / 2 \mathrm{H}_{2}$
[2]
(c) (i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(ii)

(iii)

(d) (i) pentan-2-ol
(ii)

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
product 1	product 2

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9701	22

(e) (i)

or $\quad \mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{OH}$
(ii)

or $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}_{2} \mathrm{H}$
allow ecf on (e)(i)

